Обсудим ваш проект?
Отправить заявку
Интернет-маркетинг,
который даёт результат
Россия: 8 (800) 775-63-20
Отправить заявку

Go Go Power BI!* Как кастомные рекламные отчеты спасут вас от бессмысленной траты времени, денег и сил


Просмотров:
2174
Время на прочтение:
Информация о статье
Просмотров: 2174
Время на прочтение:
Никита, ведущий маркетолог
Никита, ведущий маркетолог

Многие маркетологи и веб-аналитики (особенно те, кто работают только над одним проектом) используют различные рекламные системы (например, Google Ads или Facebook Ads Manager) и сервисы аналитики (например, Яндекс.Метрику или Google Firebase) одновременно.

Все сервисы имеют свой интерфейс, предназначенный для отслеживания и анализирования трафика, расхода бюджета, количества конверсий и т.д. Очевидно, такое разделение мешает комплексному и оперативному анализу рекламы. Так что рано или поздно каждый специалист начинает мечтать о всемогущем трансформере, который совместит в себе все показатели из разных систем и поможет если не спасти планету, то хотя бы победить конкурентов.

В этой статье мы расскажем о том, как нам удалось приручить одного такого трансформера, а именно Power BI, и на реальных примерах покажем, в чем его мощь.

Как мы пришли к созданию кастомных отчетов

Маркетолог, который пытается создать единый отчет со всеми данными по РК, сталкивается с рядом проблем:

  1. Отсутствие прямой интеграции между системами. Например, если в Яндекс.Метрике мы можем посмотреть расход бюджета в Яндекс.Директе, то посмотреть там же расход бюджета в Facebook Ads Manager без сторонних сервисов и ухищрений уже не удастся.
  2. Огромные трудозатраты. Скачивание файлов со статистикой из каждого рекламного кабинета, приведение их к общему виду и объединение порой могут занимать больше времени, чем непосредственно ведение РК. В результате у специалиста остается мало времени на тестирование гипотез.
  3. Отсутствие оперативности. Эта проблема вытекает из предыдущей: не имея достаточного количества времени, специалист может упустить важные изменения в рекламных кампаниях.
  4. Человеческий фактор. Пропущенная строка в скачанном файле, другой формат чисел, не учтенный НДС грозят потерей или неверным подсчетом данных.

Поработав с некоторыми из них, мы выделили несколько общих негативных моментов:

  1. Недостаточная гибкость. В большинстве систем нельзя группировать данные по собственным критериям (например, по одному товарному направлению), создавать свои метрики (напримеру, меру коверсии из оформленных заказов в доставленные заказы) и оперативно подключать дополнительные источники данных.
  2. Потеря информации. В некоторых случаях мы фиксировали расхождение данных между сервисом и рекламным кабинетом.
  3. Узкие возможности визуализации. Функционала большинства систем недостаточно для создания собственных визуальных элементов (например, данные можно отобразить только в виде таблицы и диаграммы).
  4. Высокая цена. Для некоторых небольших клиентов стоимость подключения сервиса сквозной аналитики может быть сопоставима с рекламным бюджетом.

Эти недостатки сервисов сквозной аналитики вдохновили нас на создание кастомной системы, которая отвечала бы именно нашим нуждам.

В число наиболее популярных и удобных бесплатных инструментов для визуализации отчетов входят Google Data Studio от Google и Power BI от Microsoft. Мы выбираем Power BI, в первую очередь, за большое количество бесплатных коннекторов, позволяющих загружать данные из различных источников. В Google Data Studio коннекторов меньше, к тому же некоторые из них платные (например, интеграция с Яндекс.Метрикой и Яндекс.Директом через коннектор от Supermetrics).

Почему мы выбираем Power BI

Кроме упомянутого преимущества, Power BI привлек нас рядом других характеристик:

  1. Автоматический сбор данных. Все интеграции настраиваются один раз с помощью коннекторов или скриптов. Затем данные подгружаются автоматически в соответствии с расписанием обновления данных (например, каждый день в X часов X минут).
  2. Доступность данных в режиме 24/7. Поскольку данные обновляются автоматически, можно не тратить время на сбор отчета и сразу анализировать любые изменения.
  3. Точность. Статистика выгружается по API напрямую, без подключения сторонних сервисов и промежуточной обработки, поэтому данные в Power BI идентичны данным из выбранных рекламных или аналитических систем. На этом примере видно, что данные в рекламном кабинете Facebook совпадают с данными в Power BI: Рекламный кабинет Facebook Вывод данных в Power BI

    В Power BI мы умножили значения расходов на 1,2, так как в Facebook сумма затрат отображается без учета НДС.

  4. Экономия времени. Отчет в Power BI настраивается лишь один раз. Затем данные обновляются за несколько минут, что позволяет специалисту тратить больше времени на глубокий анализ и принятие решений по оптимизации рекламы.
  5. Возможность работы с большим объемом данных. Просто взгляните на один из наших отчетов: Работа с большим объемом данных в Power BI
  6. Гибкость системы. Power BI позволяет достаточно быстро перестроить отчет под свои нужды: добавить какую-либо дополнительную метрику, группировку, источник данных.
  7. Экономия средств. Использование Power BI предполагает только оплату услуг специалиста без лишних покупок и расходов на обеспечение работы сервиса.
  8. Широкий функционал для визуализации. Здесь есть множество различных форматов представления данных, что позволяет создавать наглядные и простые для восприятия графики.
  9. Веб-версия отчета. Даже если мощность ПК/ноутбука или операционная система не позволяют использовать десктопную версию, отчет всегда можно увидеть в браузере. Веб-версия отчета в Power BI
  10. Мобильная версия. У Power BI есть свое удобное мобильное приложение, так что при необходимости отчет можно посмотреть в пробке или дома на диване. Мобильная версия отчета в Power BI

Теперь перейдем непосредственно к демонстрации отчетов.

Стандартный отчет в Power BI: группировки, показатели, визуальные элементы

Для начала обратите внимание на стандартный отчет и те инструменты, группировки и визуальные элементы, которые добавляются в 90 % случаев, то есть практически для каждого клиента.

Стандартный отчет, инструменты, группировки и визуальные элементы Power BI

Здесь вы видите группировку по рекламным каналам. Она позволяет отслеживать эффективность каждого канала в отдельности.

Группировка по рекламным каналам в Power BI

Мы наблюдаем за такими показателями:

  • показ,
  • просмотры (на YouTube),
  • клики,
  • расход,
  • CPC,
  • CPM,
  • CTR,
  • CPV,
  • лиды/заказы,
  • CR в лид/заказ,
  • CPL/CPO,
  • ROMI, ROAS, прибыль (если система интегрирована с CRM).

Анализа этих данных достаточно для принятия решения об увеличении охвата, оптимизации канала или полном его отключении.

Что касается визуальных элементов, здесь есть:

  • Графики различных показателей.

    Графики различных показателей в Power BI

    Они позволяют видеть динамику любого показателя (трафик, лиды, прибыль, ROMI) по дням/неделям/месяцам. При выборе отдельного параметра группировки (канал, регион, направление и т.д.) динамика на графике будет отображаться только по нему.

    Показ динамики параметра показателя при выборе параметра группировки
  • Срез по дате с ползунком.

    Ползунок позволяет выбрать определенный период, статистику за который необходимо отобразить. Срез затрагивает все элементы отчета (таблицы, графики, диаграммы). Например, если мы выбираем период между 01.09.2020 и 02.09.2020, то динамика в графиках будет только по этим датам, а в таблицах будут отображаться суммарные данные за 1-2 сентября 2020 г. Выбрать период можно тремя способами: вписать даты вручную, указать дни в открывшемся календаре или использовать ползунок.

    Построение среза по дате в Power BI

Далее рассмотрим несколько отчетов для наших клиентов, каждый из которых мы кастомизировали в соответствии со спецификой проекта.

Кастомные отчеты: примеры из практики

Клиент 1, крупный интернет-провайдер

Основные конверсии: заявки с лид-форм и форм на сайте.

Построение среза по дате в Power BI

Интеграция с CRM-системой

Интеграция с CRM-системой

Кроме стандартного набора показателей (расход, клики с рекламного канала и т.д.), в этот отчет мы добавили важные дополнительные метрики:

  • количество подключений с каждого рекламного канала (подключение — подтвержденная пользователем заявка на оказание какой-либо услуги),
  • стоимость заявки,
  • процент конверсии из лида (заявки с контактными данными) в подключение (подтвержденный монтаж устройства или услуга).

Получить данные о количестве нам удалось благодаря интеграции Power BI с CRM-системой клиента. Подключения в данном случае — все равно что продажи, так что в отчетах мы видим их количество, конверсию, прибыль и ROMI.

Интеграция с каналами получения лидов

Интеграция с каналами получения лидов

Клиент получает контактные данные потенциальных заказчиков несколькими разными способами:

  • Форма на сайте.
  • Лид-формы в соцсетях.
  • Квиз на сайте (в данном случае через сервис Marquiz).

Чтобы не упустить статистику по каждому каналу, мы интегрировали их с Power BI. Это позволило клиенту увидеть основные контактные точки с аудиторией и направить больше усилий в их сторону.

Детальная разбивка показателей по соцсетям

Детальная разбивка показателей по соцсетям

Отдельно отметим интеграцию с лид-формами и социальными сетями в целом.

В таргетированной рекламе используется огромное количество креативов с разными посылами, поэтому нам важно детализировать данные не только на уровне каналов и кампаний, но и вплоть до каждого отдельного объявления. В Power BI мы видим расход, количество кликов и лидов с каждого из них. Это помогает определять, какой креатив лучше всего конвертируется в заявку.

Учет данных с других источников трафика

Учет данных с других источников трафика

Помимо рекламных источников, клиентов попросил отслеживать все визиты на сайт по UTM-меткам, в частности переходы из email-рассылки и переходы из приложения через push-уведомления.

Кстати, если есть необходимость отображать переходы из поисковых систем, то функционал Power BI позволяет добавить и их.

Клиент 2, один из крупнейших производителей отопительного оборудования на территории РФ и стран СНГ

Основные конверсии: лиды с сайта + оформленные онлайн заказы.

По набору показателей РК этот отчет похож на предыдущий.

Пример отчета в Power BI

Отображение показателей, позволяющих эффективно расходовать рекламный бюджет

Для каждого маркетолога важно, чтобы рекламный бюджет клиента не израсходовался раньше положенного срока, и мы не исключение.

Чтобы мониторить бюджеты в рекламных системах Яндекс.Директ и Google Ads, мы настроили выгрузку их остатков и отображение количества дней до конца отчетного периода.

Однако для максимально эффективной ежедневной демонстрации рекламы одного остатка бюджета недостаточно. Поэтому дополнительно мы настроили такие показатели:

  • Средний расход за 3 дня.
  • Необходимый расход в день (остаток бюджета / остаток дней).
  • Отклонение между «Сколько тратим» и «Сколько тратить».
Отчет по рекламным бюджетам в Power BI

Эти показатели подсказывают нам, что на рекламу в данный момент тратится:

  • слишком много, а значит необходимо сбавить обороты на процент отклонения;
  • слишком мало, поэтому самое время усилиться на процент отклонения;
  • оптимальное количество средств (за счет идеально подобранных ставок и дневного бюджета).

Интеграция медийных показателей эффективности

В процессе продвижения для увеличения узнаваемости бренда и стимулирования спроса важно задействовать медийную рекламу.

Чтобы отслеживать эффективность по уже настроенным медийным инструментам (от графических объявлений до видеороликов на YouTube), мы интегрировали статистику и добавили важные именно для медийной рекламы показатели:

  • показы,
  • CPM,
  • просмотры на YouTube,
  • CPV.
Интеграция медийных показателей эффективности в Power BI

Эти показатели помогают отслеживать эффективность каждого отдельного канала и решать, куда лучше распределить средства и какие инструменты нужно оптимизировать или отключить.

Разбивка по товарным направлениям

У клиента несколько товарных направлений. Каждое имеет свой период спроса, а значит РК нужно усиливать в разное время.

Разбивка по товарным направлениям в Power BI

Такая разбивка помогает отслеживать дисбаланс в расходе средств на рекламу разных типов продукции и в целом видеть эффективность каждого из них.

Разбивка по регионам

Реклама показывается в огромном количестве регионов. Результаты по каждому из них необходимо отслеживать отдельно. Логика группирования по регионам схожа с логикой группирования по направлениям.

Группировка по регионам в Power BI

Благодаря раздельной статистике мы видим, какие регионы требуют оптимизации РК, а где рекламу для большей эффективности можно усилить.

Для оперативного контроля мы настроили сравнение показателей отчетного периода с данными за предыдущий месяц по каждому региону отдельно.

Сравнение показателей отчетного периода с данными за предыдущий месяц по регионам в Power BI

Соблюдение баланса между крупными и малыми регионами

Соблюдение баланса между крупными и малыми регионами в Power BI

Одна из задач по данному проекту — соблюдение определенного процента расходования средств от общего бюджета на два крупнейших региона (Москва + МО и Санкт-Петербург + ЛО). Это нужно, чтобы получать конверсии не только из столиц, но и из других регионов.

Для отслеживания доли мы настроили диаграммы, на которых видим, какой регион в каком соотношении от общего числа показывает определенную эффективность (процент кликов, процент расходования средств и общий процент конверсий и лидов). Это помогает нам балансировать между всеми регионами, не зацикливаясь на продвижении только в двух крупнейших.

Клиент 3, крупный универсальный интернет-магазин

Основные конверсии: онлайн-покупки.

Отчет крупного интернет-магазина в Power BI

Парсинг данных с большого количества файлов Excel (нельзя так просто взять и избавиться от «экселек»)

При подготовке отчета для этого клиента мы столкнулись с серьезной проблемой: данные по продажам выгружаются только в Excel-файл и никак иначе (система клиента не поддерживает работу с API). То есть каждый день нам приходит около 10 файлов. Копирование статистики или интеграция с каждым из них занимает уйму времени.

Парсинг данных с файлов Excel в Power BI

Так как Power BI поддерживает язык R, мы написали небольшой скрипт, позволяющий парсить всю информацию с файлов в нужной папке и отправлять их сразу в Power BI.

Пример использования скрипта для парсинга данных с файлов Excel в Power BI

Так процесс обновления сократился до двух действий: помещаем файлы с данными по продажам в определенную папку и нажимаем кнопку «обновить» в Power BI.

Детализация — наше все

В рекламных кабинетах клиента множество кампаний и еще больше групп объявлений. Каждая из них — отдельное товарное направление. Все группы размечены уникальными тегами.

В отчетах по продажам (те самые «эксельки», о которых мы сказали выше) есть полная информация о покупках по тегам групп объявленией (сколько товаров купили, на какую сумму, сколько вернули и т.д.).

Сопоставив в Power BI данные по расходам из рекламных кабинетов (для этого мы интегрировали статистику из них) и данные из отчетов по продажам, полученные путем парсинга, мы смогли внедрить сквозную аналитику. Теперь мы видим ROAS, ROMI, ДРР в пределах от макроуровня (сайта) до микроуровня (группы объявлений или товарного направления) и можем принимать решения об отключении или усилении товарных направлений.

Сквозная аналитика от уровня «сайта» до «группы объявлений» в Power BI

Однако и это еще не все. В рекламных кабинетах есть разбивка статистики по типам устройств (ПК, планшеты и мобильные). Также разбивку по типам устройств (покупка с ПК или с мобильного) предоставляет CRM. Мы сопоставили эти данные, так что теперь мы видим, с каких устройств какие товары покупают чаще, а с каких вообще ничего не покупают. На основе этих данных внедряем корректировки, увеличивая тем самым отдачу от рекламы.

Вывод статистики в разбивке по видам устройств в Power BI

Итог

“Praemonitus, praemunitus” или, как принято говорить, «Предупрежден — значит вооружен».

Такой трансформер, как Power BI, в умелых руках действительно может стать грозным оружием для конкурентов. Он обеспечит вам полную картину происходящего на рекламном поле боя, оперативность для принятия стратегических решений и возможность бомбардировать отдел продаж лидами и покупками.

Еще больше об эффективном использовании Power BI, а также об оптимизации рекламных кампаний крупного интернет-провайдера в период пандемии COVID-19, мы расскажем в нашем следующем кейсе. Stay tuned!

Бонус для тех, кто дочитал до конца и кого заинтересовал наш трансформер! Мы готовы предоставить вам доступ к тестовому отчету, чтобы вы вживую оценили удобство, функционал и возможности детализации системы Power BI.
Для этого заполните форму и ждите письмо от нас на почте.