Сокращаем расходы на рекламу в бизнесе с длинным циклом продаж

Автор — Денис Осадчий, 3 Марта 2016 Подготовлено для Cossa.ru

Недавно COSSA, одно из самых популярных интернет-изданий о маркетинге, опубликовало наш кейс, посвященный оптимизации рекламных кампаний для бизнеса с длинными циклами продаж: для рынка B2B, для оптовых продаж и продаж через дилеров и крупных B2С-сделок. В нем мы рассазывали, как принимать верные решения, не теряя драгоценного времени.
Мы не можем не похвастаться этим достижением и дублируем текст статьи здесь.


Чтобы получить измеряемый в деньгах результат и максимум продаж, нужно использовать принципы performance-based маркетинга: настроить сквозную аналитику и оптимизировать рекламные каналы на основании достоверных данных о продажах. Но как сократить время на принятие решений при длительных сделках и при крупных и непоточных продажах, когда данные поступают с большой задержкой?
  
Мы практикуем гибкую аналитику, и на примере хотим рассказать, зачем, имея данные о продажах, нужно анализировать другие показатели, и как это помогает сократить неэффективные расходы.

Идея performance-based маркетинга проста и эффективна: определяем пороговый возврат инвестиций и ставим задачу в терминах продаж: «Нужно привлечь продажи на 10 млн с ROI (показатель возврата инвестиций) не менее 500%». 

Далее настраиваем аналитику, чтобы учитывать все продажи, их источники, а также расходы в одном месте. Запускаем рекламу в разных системах, накапливаем данные и принимаем верные решения: в примере выше рекламные инструменты, которые дают меньше 5000 рублей прибыли на каждые вложенные 1000 рублей в рекламу — отключаем, все инструменты и кампании, которые дают больше продаж, cчитаем эффективными и продолжаем размещение в них, а наиболее эффективные кампании масштабируем, то есть вкладываем в них больше, приводим больше потенциальных покупателей и получаем больше продаж.

И это отличный план — теперь вы вкладываете только в то, что приносит деньги. Но что если вы продаете совсем не пиццу и длительность принятия решений и закрытия сделок составляет недели или даже месяцы? 


Оценка каждой кампании займет 2-3 месяца. Такая ситуация характерная для B2B, оптовых продаж и продаж через дилеров, для крупных B2С-сделок, например, услуг по строительству домов, покупке авто и прочих. 

Для успешного маркетинга важно тестировать разные инструменты, площадки и таргетинги. У бизнесов с крупными продажами еще и очень узкая аудитория, и для охвата этих штучных клиентов важно тестировать и использовать все доступные инструменты: рекламу в поиске и в контекстно-медийных сетях, в социальных сетях, в мобильных приложениях, на YouTube — везде, где могут быть ваши клиенты. При этом данные о продажах и эффективности инструмента у вас появятся не раньше чем через 2 месяца после запуска рекламы, когда пройдет существенная часть сделок с клиентами. 


Вы сможете оплачивать рекламу во всех системах 2-3 месяца, пока не увидите закрытые сделки? И только тогда отключить те системы, что работают в минус? 
Или откажетесь от тестирования всех перспективных инструментов и таргетингов, в эффективности которых вы или ваш маркетолог заранее не уверены полностью?

Скорее всего, часть таких инструментов даст вам клиентов с низкой стоимостью привлечения, и, отказавшись от них, вы сократите объем продаж и вынуждены будете привлекать клиентов из более очевидных каналов с более высокой стоимостью.

Цикл тестирования инструментов на основе данных о продажах выглядит так: 

  1. Тестовый запуск инструментов с относительно небольшим бюджетом; 
  2. Оценка эффективности каждого расхода c таким периодом сбора данных, чтобы учесть существенную долю сделок по заявкам; 
  3. Отключение неэффективных инструментов или таргетингов, оптимизация остальных и масштабирование вложений в инструменты, показавшие наибольшую эффективность. 

Далее повторяем такие циклы запуск-оценка-корректировка. 

Но нужно адаптировать схему под длинные циклы продаж, чтобы сократить расходы на неэффективные кампании, т.е. сократить период работы вслепую, пока накапливаются данные о продажах. 

Именно поэтому при оптмизации кампаний для бизнесов с длительными и крупными сделками мы применяем поэтапный анализ и параллельно со сбором данных о продажах проводим анализ и оптимизацию на основании менее достоверных, но более оперативных данных. 

Это могут быть данные о качестве трафика (показателей отказов, глубины просмотров), процент конверсии в обращения и звонки (еще не продажи), стоимость таких конверсий, стоимость пользователя зашедшего на страницу «Контактная информация» или страницу «Условия сотрудничества» и прочие маркеры интереса клиентов к сотрудничеству. 

Это недостоверные данные: конверсия из интереса и заявок в продажи в разных таргетингах может быть очень разной, и мы еще не знаем, какой точно будет возврат инвестиций, и какая кампания пройдет по заданным в начале показателям, а какая — нет. Поэтому важно понимать, что категоричность решений должна зависеть от уровня достоверности данных. 



Важно постоянно использовать все доступные индикаторы интереса к покупке и определять их еще до запуска кампании, настраивая средства аналитики для их отслеживания. 

Пример гибкого поэтапного анализа 

К нам обратился клиент c задачей увеличить оптовые продажи одежды. Компания — производитель одежды. После обсуждения с клиентом мы поняли, что целью кампании должно быть привлечение организаторов совместных покупок (СП), поскольку этот сегмент продаж увеличить с помощью рекламы легче всего. 

Проанализировав данные клиента, мы выяснили, что СП в одежде в среднем длятся 3 недели. Это значит, что анализ эффективности кампаний можно провести только через полтора-два месяца после запуска. Поэтому мы сразу запланировали разбить анализ на несколько этапов. 

Все заказы принимаются только онлайн — это политика компании: при большой номенклатуре самостоятельный заказ в личном кабинете позволяет снизить количество ошибок при формировании заказов. Поэтому все показатели мы контролируем в веб-аналитике, без использования колл-трекинга. В нем нет необходимости. 

Мониторинг показателей качества трафика и сравнительный анализ кампаний по данным о регистрациях оптовых покупателей проводился ежедневно после запуска, это позволило быстро выявить и отключить неэффективные запросы и сегменты аудитории внутри инструментов. Глубокий анализ проводился в 2 этапа. 

Первый этап: на основе данных о цене регистрации готового покупателя. 
 
Если бы заказы поступали и по телефону, то имело бы смысл включить анализ обращений по телефону. Но их нет, поэтому самым репрезентативным «быстрым» показателем мы выбрали регистрации оптовиков. 

Через 2 недели у нас уже было достаточно данных: 



Мы видим существенную разницу в цене привлечения оптового покупателя из разных инструментов. Но мы не можем отключить худшие инструменты полностью только на основании стоимости регистрации, чтобы не потерять покупателей, которые в будущем могут дать более крупные продажи либо покупать более регулярно. 

Тем не менее уже сейчас мы можем сравнить кампании, принимая во внимание особенности таргетингов и трафика, который мы привлекаем в каждом из них. Мы можем сегментировать трафик и расходы внутри инструментов и найти достаточно схожие аудитории, которые дают худший показатель первичного интереса. 

На основании этих данных мы провели детальный анализ баннерной рекламы в Google КМС и увидели, что часть регионов дает посетителей, которые практически не конвертируются в запросы прайса. Провели аналогичный анализ для остальных инструментов и после консультаций с клиентом отключили рекламу в некоторых регионах. В части регионов снизили расходы, в остальных — ждали решения получения полных данных о продажах. Часть сокращенных бюджетов мы направили на инструмент, показывающий наилучшие показатели — рекл
амную сеть «Яндекса». 

Также в первые 2 недели мы мониторили данные о фактических запросах и качестве трафика по ним (показатели отказа, времени на сайте). Подробно доработали минус-слова, чтобы исключить переходы по нецелевым запросам. 

Второй этап анализа: после 14 недель мы получили такие показатели о возврате инвестиций: 



Критерий успешности инструмента в данном случае был ROI>300% 

В результате к моменту появления данных о продажах, оптимизированная баннерная кампания в Google имела отличные показатели возврата инвестиций. А перенаправление на ранней стадии бюджета на сеть «Яндекс», которая давала наиболее дешевые регистрации оптовых клиентов, помогло привлечь больше клиентов из этой сети и раньше оптимизировать расходы с помощью решений с высокой вероятностью. 

Вывод 

В борьбе за клиента в digital-маркетинге выиграет тот, кто не только знает, сколько продаж ему дает каждый вложенный рубль, но и умеет максимально быстро принимать решения о корректировке стратегии, тот, кто научится в рамках performance-подхода использовать метод Fail Fast и сможет тестировать больше инструментов привлечения клиентов.


Больше статей по теме:

Мультирегиональное
продвижение

Проверенные и работающие инструменты для увеличения продаж в любом регионе России и странах СНГ. Подробнее

Нам доверяют